Vitamin K

Vitamin K is a fat-soulble vitamin playing a major role in blood clotting and bone formation. It is found primarily in dark green leafy vegetables, cooking oils and fermented dairy products. In addition, gut bacteria produce vitamin K, which usually covers half daiily requirements.

VItamin K deficiency is extremely rare and is usally a consequence of some rare genetic disorders as well as liver diseases, chronic antibiotic use and bowel resection.

The Most Relevant Recent Scientific Reviews

(click on the title link to access the full reference)

Prophylactic vitamin K for the prevention of vitamin K deficiency bleeding in preterm neonates.

BACKGROUND:
Vitamin K is necessary for the synthesis of coagulation factors. Term infants, especially those who are exclusively breast fed, are deficient in vitamin K and consequently may have vitamin K deficiency bleeding (VKDB). Preterm infants are potentially at greater risk for VKDB because of delayed feeding and subsequent delay in the colonization of their gastrointestinal system with vitamin K producing microflora, as well as immature hepatic and hemostatic function. OBJECTIVES: To determine the effect of vitamin K prophylaxis in the prevention of vitamin K deficiency bleeding (VKDB) in preterm infants.

SEARCH METHODS:
We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 11), MEDLINE via PubMed (1966 to 5 December 2016), Embase (1980 to 5 December 2016), and CINAHL (1982 to 5 December 2016). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles.

SELECTION CRITERIA:
Randomized controlled trials (RCTs) or quasi-RCTs of any preparation of vitamin K given to preterm infants.

DATA COLLECTION AND ANALYSIS:
We evaluated potential studies and extracted data in accordance with the recommendations of Cochrane Neonatal.

MAIN RESULTS:
We did not identify any eligible studies that compared vitamin K to no treatment.One study compared intravenous (IV) to intramuscular (IM) administration of vitamin K and compared various dosages of vitamin K. Three different prophylactic regimes of vitamin K (0.5 mg IM, 0.2 mg vitamin K1, or 0.2 mg IV) were given to infants less than 32 weeks’ gestation. Given that only one small study met the inclusion criteria, we assessed the quality of the evidence for the outcomes evaluated as low.Intramuscular versus intravenousThere was no statistically significant difference in vitamin K levels in the 0.2 mg IV group when compared to the infants that received either 0.2 or 0.5 mg vitamin K IM (control) on day 5. By day 25, vitamin K1 levels had declined in all of the groups, but infants who received 0.5 mg vitamin K IM had higher levels of vitamin K1 than either the 0.2 mg IV group or the 0.2 mg IM group.Vitamin K1 2,3-epoxide (vitamin K1O) levels in the infants that received 0.2 mg IV were not statistically different from those in the control group on day 5 or 25 of the study. All of the infants had normal or supraphysiologic levels of vitamin K1 concentrations and either no detectable or insignificant amounts of prothrombin induced by vitamin K absence-II (PIVKA II).Dosage comparisonsDay 5 vitamin K1 levels and vitamin K1O levels were significantly lower in the 0.2 mg IM group when compared to the 0.5 mg IM group. On day 25, vitamin K1O levels and vitamin K1 levels in the 0.2 mg IM group and the 0.5 mg IM group were not significantly different. Presence of PIVKA II proteins in the 0.2 mg IM group versus the 0.5 mg IM group was not significantly different at day 5 or 25 of the study.

AUTHORS’ CONCLUSIONS:
Preterm infants have low levels of vitamin K and develop detectable PIVKA proteins during the first week of life. Despite being at risk for VKDB, there are no studies comparing vitamin K versus non-treatment and few studies that address potential dosing strategies for effective treatment. Dosage studies suggest that we are currently giving doses of vitamin K to preterm infants that lead to supraphysiologic levels. Because of current uncertainty, clinicians will have to extrapolate data from term infants to preterm infants. Since there is no available evidence that vitamin K is harmful or ineffective and since vitamin K is an inexpensive drug, it seems prudent to follow the recommendations of expert bodies and give vitamin K to preterm infants. However, further research on appropriate dose and route of administration is warranted.

Vitamin K and bone.

Vitamin K is mainly known as an agent involved in blood coagulation, maintaining the activity of coagulation factors in the liver. In addition, epidemiological studies suggested that a lack of vitamin K is associated with several diseases, including osteoporosis and vascular calcification. There are two main kinds of vitamin K: Phylloquinone (or PK) and Menaquinones (MKn), both act as co-enzyme of y-glutamyl carboxylase (GGCX) transforming under-carboxylated in carboxylated vitamin K dependent proteins, such as Bone Gla Protein (or Osteocalcin) and Matrix Gla Protein. Recently, Vitamin K was also identified as a ligand of the nuclear steroid and xenobiotic receptor (SXR) (in murine species Pregnane X Receptor: PXR), expressed in osteoblasts. The purpose of this literature review is to evaluate the protective role of Vitamin K in bone and vascular health.

The Role of Vitamin K Status in Cardiovascular Health: Evidence from Observational and Clinical Studies.

PURPOSE OF REVIEW:
Vitamin K is a fat-soluble vitamin required for the activation of several vitamin K-dependent proteins to confer functioning. A growing body of evidence supports that vitamin K has beneficial effects on bone and cardiovascular health. This review summarizes key evidence on vitamin K status as measured by circulating measures and cardiovascular outcomes.

RECENT FINDINGS:
Overall, observational studies indicate that low vitamin K status as measured by high dephosphorylated uncarboxylated matrix gla protein concentrations plays a potential role in cardiovascular disease development, particularly in high-risk and chronic kidney disease populations. Very few vitamin K intervention trials have been conducted with cardiovascular-related outcomes. A couple of intervention trials studied the effect of the combination of vitamin D + K supplementation, which might have synergistic effects compared to vitamin K supplementation alone.

SUMMARY:
Assessing vitamin K status in prospective studies and well-designed randomized trials would provide important insight whether vitamin K is causally related to vascular calcification and cardiovascular disease.

Vitamin K and its analogs: Potential avenues for prostate cancer management.

Epidemiological studies have demonstrated a relationship between cancer incidence and dietary habits. Especially intake of certain essential nutrients like vitamins has been shown to be beneficial in experimental studies and some clinical trials. Vitamin K (VK) is an essential nutrient involved in the blood clotting cascade, and there are considerable experimental data demonstrating its potential anticancer activity in several cancer types including prostate cancer. Previous in vitro and in vivo studies have focused mainly on anti-oxidative effects as the underlying anticancer mechanism of VK. However, recent studies reveal that VK inhibits the growth of cancer cells through other mechanisms, including apoptosis, cell cycle arrest, autophagy, and modulation of various transcription factors such as Myc and Fos. In the present review, we focus on the anticancer effect of dietary VK and its analogs on prostate cancer, with an emphasis on the signaling pathways that are activated following exposure to these compounds. This review also highlights the potential of VK and its derivatives as an adjuvant treatment in combination with other vitamins or with chemotherapeutic drugs. Based on our recent results and a review of the existing literature, we present evidence that VK and its derivatives can potentially be explored as cancer therapy, especially for prostate cancer.